An unification scheme for classical and quantum mechanics at all velocities (I)

J. X. Zheng-Johansson^{1,*}

¹Stockholmsvägen 14, 611 37 Nyköping, Sweden [†] (Dated: June, 2000 - August 28, 2002)

(* confidential * read by Prof Börje Johansson only)

Abstract

Based on pivotal experimental indications we first depict the microscopic structure of the vacuum medium, which comprises substantial entities termed as the familiar aethers, and the law of the motion of the electromagnetic waves, which consistently obeys the Galilean transformation. This facilitates a *general scheme* for the microscopic formation of a material particle, which we thereupon carry out. We infer that, given the disturbance of a bare charge – an *aether-pole*, as a direct result of the Newtonian-mechanics solution of equations of motion of the aethers in the vacuum medium, a (basic) material particle evolves thereby into existence. The particle may be an electron, a proton, or an anti-particle of either; or a "photon" and a "phonon" if associated with the detached waves. The resulting particle has an *inertial mass, electric charge* and *basic size*, as well as a built-in scheme for spin to be implemented in a separate paper, conforming to the experimental exhibitions. Meanwhile, the resulting particle is from its formation generically a de Broglie wave, here called a Newton-de Broglie (particle) wave, resulting from a first kind source effect. This particle wave at low velocities generically obeys Newtonian wave mechanics which, as combined with the NdB particle wave, identifies with Schrödinger's quantum mechanics. At higher velocities, the governing law converges to Newtonian mechanics for particles. We hither accomplish a basic part of the task of the unification of the classical and the quantum- mechanics, both in terms of the deduction of the latter from the former, and in terms of the convergence of the latter into the former in a high kinetic regime. Through this general scheme, the origin and the nature of a series of fundamental phenomena and empirical notions, to-date yet unexplained, unfold themselves naturally. These include the nature of the *electromagnetic waves*, the origin of *inertial mass*, the nature of radiation, absorption and excitations, the origin of the de Broglie wave and Schrödinger's wave function, the origin of Heisenberg's uncertainty relation, etc. Through this general scheme, a series of fundamental relations and rules, already formulated by quantum mechanics and other contemporary physics as phenomenological laws and demonstrated by experiments, evolve into existence naturally, these including the *de Broglie relations*, the simultaneous existence of electron and positron or, generally, of particles and their anti-particles, the (rest) mass energy equivalence principle, the uncertainty relation, etc. As a separate but correlated context, we further infer that, the very general scheme leads to also a second kind source effect, which results in augmentation by a factor $\gamma = 1/\sqrt{1 - v^2/c^2}$ in the inertial mass, the wavevector and frequency of the constituent waves, etc. of a particle moving at the velocity in the v-direction; and conversely for their reciprocal properties. In a body composed of these particles, this accordingly leads to a *simultaneous length* and time contractions as measured in the frame in which the body resides. This, combined with

the Galilean transformation, leads to a set of coordinate transformation equations between an inertial reference frame at rest (in vacuum) and one moving relative to it, called *Galileo-Lorentz transformation*. The content of this separate context gives rise to a consistent *theory of relative motion*. With the theory, the unified classical and quantum mechanics are thereby both vigorously expressed at velocities comparable to c. Employing the theory of relative motion, which in turn justifies the theory itself, we predict the experimentally observed null-fringe shift result of the Michelson-Morley experiment, the Doppler effects and particle dynamics at $v \sim c$.

PACS numbers:

Contents

I.	Introduction	6
II.	Experimental indication of the dependence of light velocity on the	
	motion of the observer and the substantial property of vacuum	7
	A. The experimental indication of the dependence of light velocity on the motion	
	of observer	9
	B. Experimental indication of the substantial property of vacuum	11
	C. The law of relative motion of electromagnetic waves: Proposition 1	13
III.	An unification scheme for classical and quantum mechanics	13
	A. The properties of vacuum: Propositions 2-3	13
	B. Material particle at rest: its formation from a localized charge in vacuum as	
	governed by Newtonian mechanics	18
	1. The forced oscillation of the aether particles and the resultant	
	electromagnetic wave trains	19
	2. The frequency and the modes of the travelling electromagnetic wave train	21
	3. The total energy of the electromagnetic wave train	22
	4. The rest-mass of a material particle, its equivalence to the viscose resistance	е
	to the oscillation of the aether-pole, or equivalently to the motion of the	
	electromagnetic wave train	25
	5. The origin of inertial mass	26
	6. The origin of size of a basic particle	27
	7. The energy and inertial mass relation of a material particle	28
	8. Semi-empirical expressions for Planck's constant and de Broglie wave lengt	n 28
	9. Concluding remarks of Sec. III B	30
	C. Material particle in motion: its formation from a moving charge in vacuum in	to
	a particle wave as governed by Newtonian (wave) mechanics, which is	
	equivalent to the Schrödinger's wave mechanics	30
	1. The first kind source effect on a particle in motion	30
	2. Moving particle confined in a one-dimensional box, the single particle	
	Newton-de Broglie wave	31
	3. Electron orbiting about nucleus in a hydrogen-like atom	39
	4. Photons and the nature of thermal excitation related processes	41

5. General implication: the governing mechanics of particle motion identifies	
with the Schrödinger's quantum mechanics	42
D. The dynamics of a particle moving at high velocities: the classical limit	44
IV. The Theory of Relative Motion	46
A. A second kind source effect on the dynamic property of a moving material	
particle as inferred from Newtonian mechanics	46
B. The dynamic mass-energy equivalence relation inferred from Newtonian wave	
mechanics	48
C. Second kind source effect on the NdB wave properties of a single material	
particle in motion	49
D. Second kind source effect on the size of a single material particle in motion	49
E. Second kind source effect carried on to a moving material body	52
F. The Galilean-Lorentz Transformation (GLT) – the Galilean Transformation	
with the second kind source effect incorporated	53
1. Intermediate coordinate transformations	53
2. Coordinate transformation between relatively moving observers	55
G. The GLT applied to light wave traversing between two points fixed on a space	ng
device	56
1. General variant cases	56
2. The Michelson-Morley Experiment as special case: a null-fringe shift is	
predicted	59
H. Dynamics of a material particle	59
I. Doppler effect with the second kind source effect incorporated	60
A. The energy - mometum relation of electromagnetic wave	63
B. The non-classical, second kind source effect derived in terms of wave	
parameters	65
C. Light traversing a closed loop: the classical spacing-device motion effective	ct 67
D. Incremental mass due to the particle's incremental thermal velocity	70
E. A quantitative estimation of the total length JL of the electromagnetic	с
wave train	70

\mathbf{F}	Dimension contraction of a body in motion as a result of the contraction of its constituent particles, a discussion from the established approaches	n S
	in condensed matter physics	73
G	. Motion of the nucleus-electron system in the centre-of-mass corrdinate	74
	References	77
VIII	aether- 3 d osillation model	80
IX.	traveling de Broglie wave in X- coordinates	80
X	. Discussion of the de Broglie wave at high v	80
XI	. The frequency and the modes of the standing electromagnetic wave train	n 80
XII	. Waves generated by charges travelling in opposite directions	81
XIII	. Simultaneous, oppositely travelling waves generated by an oscillating charge (FIG. only)	82
XIV.	Comments on the inner inconstancy of Einstein's special relativity theory	82
1.	INTRODUCTION	

The IED particle model and vacuum structure described here are in the final form. Some views, terms and ways of introductions are not updated or out of dated. Regarding their updated editions recent publications are to be referred to. /JXZJ, 2010-06-04.